
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for Public Release, Distribution is Unlimited

CONSTRUCTING HIGHER-ORDER DE BRUIJN GRAPHS

by

D’Hania J. Hunt

June 2002

 Thesis Advisor: Harold Fredricksen
 Second Reader: Craig W. Rasmussen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Constructing Higher-Order de Bruijn Graphs
6. AUTHOR(S) CPT D’Hania J. Hunt

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release, Distribution is Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

We construct binary de Bruijn graphs of odd order using recursive generation. We also explore the properties and nuances of

these particular graphs. The recursive method developed for this thesis could in principle be used for other de Bruijn graphs of

a different order. Suggestions on how this is accomplished are included in the paper and areas of further research topics.

15. NUMBER OF
PAGES

61

14. SUBJECT TERMS Graph Drawing, Recursion, de Bruijn Graphs

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for Public Release, Distribution is Unlimited

CONSTRUCTING HIGHER-ORDER DE BRUIJN GRAPHS

D’Hania J. Hunt
Captain, United States Army

B.S., United States Military Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June 2002

Author: D’Hania J. Hunt

Approved by: Harold Fredricksen

Thesis Advisor

Craig W. Rasmussen
Second Reader

Clyde W. Scandrett
Chairman, Department of Mathematics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

We construct binary de Bruijn graphs of odd order using recursive generation.

We also explore the properties and nuances of these particular graphs. The recursive

method developed for this thesis could in principle be used for other de Bruijn graphs of a

different order. Suggestions on how this is accomplished are included in the paper and

areas of further research topics.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. GOALS..2
C. ORGANIZATION OF STUDY ..2

II. LITERATURE REVIEW ...5

III. CONSTRUCTING THE GRAPH ..13
A. LABELING ..14
B. PARAMETERS AND CONSTRAINTS ..15
C. RECURSIVE GENERATION..17

IV. RESULTS ...21
A. BUILDING THE GRAPHS ..21
B. PROPERTIES OF THE GRAPH...33

V. CONCLUSIONS AND RECOMMENDATIONS...41
A. SUGGESTIONS TO IMPROVE OUR IMPLEMENTATION.................41
B. FUTURE RESEARCH..43

LIST OF REFERENCES ..45

INITIAL DISTRIBUTION LIST...47

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 2.1. Massey-Liu Graph for span n = 4 ..6
Figure 2.2. B1-B4 as depicted by Golomb (1967)...7
Figure 2.3. B5 as depicted by Golomb (1967)..7
Figure 2.4. Taylor’s depiction of de Bruijn graph for n = 6 ...8
Figure 2.5. Good-de Bruijn graph of span n = 6 embedded in a sphere...............................9
Figure 2.6. Cycle Adjacency Array for n = 5 ...10
Figure 3.1. de Bruijn graph, B1...14
Figure 3.2. Parameters for our recursive process ...16
Figure 4.1. Four copies of B1..21
Figure 4.2. Placement of copies 0 and 1...22
Figure 4.3. Placement of copies 2 and 3...23
Figure 4.4. Recursively generated B3 ...24
Figure 4.5. Four copies of B3..25
Figure 4.6. Illustration of Symmetry Property 1)...26
Figure 4.7. Placement of copies 0, 1, 2 and 3...27
Figure 4.8. Recursively generated B5 ...28
Figure 4.9. Traditional B3, generating B5 and B7 ...29
Figure 4.10. Non-traditional B3, generating B5 and B7 ..30
Figure 4.11. Model B3, generating B5 and B7 ..31
Figure 4.12. B3 used to generate B5-B13...32
Figure 4.13. Recursively generated B9 ...34
Figure 4.14. Location of node 294 on B9 ...35
Figure 4.15. B11 with outlining copies of B3 ..37
Figure 4.16. B13 with outlining copies of B3 ..38
Figure 4.17. Centerlines on B3, B5, and B7 ...39
Figure 5.1. Outline of B7 at α = 20o ...42
Figure 5.2. Outline of B9 at α = 20o ...42
Figure 5.3. Outline of B11 at α = 20o..43

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

The author wishes to thank Professor Harold Fredricksen for his guidance,

patience and support throughout this process. Thanks for introducing to me a whole new

area of mathematics. Thanks to Professor Craig Rasmussen for being the second reader.

The author would also like to acknowledge the support of LTC(R) Willie Hunt,

Dianne Hunt, Wesley Hunt, Wrendon Hunt and Harry Hung, thanks for all of your

prayers and love.

Lastly and most importantly the author acknowledges the Lord, Jesus Christ, for

the blessing of patience and perseverance. Thank the Lord it is done!

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A graph is a discrete structure consisting of a set of nodes and a relation on that

set that is conveniently visualized as a set of edges joining certain pairs of nodes. We

make relatively little use of the terminology and theory of graphs here; what we use will

be defined as the need arises. In some applications of graph theory to practical problems

(e.g., VLSI circuit design, software engineering diagrams, and the depiction of graphs for

purposes of describing graph algorithms) it is useful to have a method for representing a

graph that in one or another way facilitates understanding. The goal might be to

understand the structure of the object modeled by the graph itself, or to understand the

behavior of an algorithm whose input includes a graph or network. The study of models,

algorithms, and systems for visualization of graphs and networks is called graph

drawing. For a survey of the field and its applications, see Di Battista (1999).

Any sequence with the property that all but some small number of its terms are

defined by some rule applied to their predecessors is said to be recursively defined. The

use of “term” here is broadly defined; the sequence might be of numbers, of functions, or

(as in this paper) of graphs. Similarly, an algorithm is said to be recursive if, in the

course of solving a problem of size n, the algorithm calls itself to solve a smaller

problem. For a gentle introduction to recursion, see a standard introductory text on

discrete mathematics, such as Rosen (1999).

The focus of this paper is the design of a recursive graph-drawing algorithm for

generating drawings of a particular sequence of graphs known as the Good-de Bruijn

graphs.

A. BACKGROUND

Good (1946) and de Bruijn (1946) independently created the Good-de Bruijn

graphs to solve the problems of the existence and enumeration of certain cycles of 0s and

1s, namely cycles of length 2n containing each binary n-tuple. Small versions of the

graph were easily drawn to illustrate their ideas, but larger versions of the graph proved

unwieldy to draw. Massey and Liu (1965) to emphasize certain properties drew alternate

2

versions of the graph. In particular, the Massey-Liu graph is easily extended recursively

to larger sizes, something that is not apparent as originally depicted by Good and de

Bruijn.

There are additional interesting problems concerning the subject of shift register

sequences and properties of the associated de Bruijn graphs that arise only because of the

existence of the graph model. One example of such a problem is Golomb’s Conjecture

(1967) on the number of disjoint cycles that can simultaneously occur in the Good-de

Bruijn graph. Several papers have appeared concerning this conjecture, including one by

Lempel (1971) describing both another conjecture that implies Golomb’s and also a

structure that would have to exist in the graph if Lempel’s Conjecture were valid. With

the proof of the Golomb-Lempel Conjecture by Mykkeltveit (1971), the Cycle Adjacency

Array (CAA) described by Lempel gives rise to another way to describe the de Bruijn

graph. This then leads to additional interesting questions. The graph is not easily

extendible in this configuration. Nevertheless, larger versions of the graph than had

previously appeared aren’t too difficult to construct. Each different version of the graph

exhibits its own specific properties better than another and each new presentation

provides additional suggestions for new research topics. With all of this information at

hand, we set out to find a streamlined method to construct higher-order binary de Bruijn

graphs via a recursive generation of the graphs.

B. GOALS

This thesis defines a recursive process to construct higher-order de Bruijn graphs.

The process suggests a (seeming) fractal property that may appear in the graph. By this

process it is easier to build the graphs and eventually provide insight from a visual

inspection of the graphs. In the paper we present de Bruijn graphs of sizes up to 8192

nodes. The purpose of this set of graphs is to show properties of the graph on a small

scale and to demonstrate the ability to recursively build higher-order graphs.

C. ORGANIZATION OF STUDY

The paper is organized into five chapters. The first chapter is the introduction.

Chapter II focuses on previous research in the development of de Bruijn graphs. More

detail is given there on the conjectures and graphs mentioned in Chapter I. Chapter III

3

describes the process used to recursively build the odd order binary de Bruijn graphs and

defines constraints and parameters of their construction; construction of even order

graphs is similarly definable. Chapter IV illustrates the results from the outlined

constructive procedures. Chapter V gives conclusions, recommendations and areas for

future research.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. LITERATURE REVIEW

The de Bruijn graph was developed to provide a model for the solution to the

problem of finding a cycle of length 2n containing every binary n-tuple (de Bruijn, 1946),

(Good, 1946). The graph Bn, of span n, contains 2n nodes (labeled with the binary

n-tuples) and 2n+1 arcs. The term span is defined as the length of the shift register, the

size of the graph. There is an arc from the node x = x1x2…xn to the node y = y1y2…yn if

and only if x2x3…xn = y1y2…yn-1. The solution to the problem is then given as a

Hamiltonian cycle in the span-n graph visiting each node exactly once. The number of

such cycles is also known (de Bruijn, 1946) as well as the existence of cycles of each

length 1, 2,…, 2n (Golomb, 1967). The number of de Bruijn cycles is found employing a

“doubling” of the graph, i.e., an Euler circuit visiting each edge in the span-(n-1) graph is

equivalent to a Hamiltonian cycle in the span n-graph. This implies a recursive generation

of the graphs, although actually drawing the graphs is difficult. Krahn (1994) describes a

generalization of these sequences for paths that cover the edges of Bn more than once.

Other properties of the graph include its 2-regularity, 3-color ability (Berge, 1962) and

non-planarity (in general) (Johnson, 1970). For readers interested in further study of de

Bruijn sequences see Fredricksen (1982).

Since drawing the graph for higher orders is arduous, Massey (1965) developed a

modularly recursive, alternative version of the graph. This version is easily extendable to

larger sizes. A depiction of the span-4 graph is shown in Figure 2.1. Note that the

labeled regions depict the decimal representations of the nodes in the graph. The

(implicit) arcs are described as coming from internal nodes to the nodes immediately

exterior to them. There is also an arc from node 0 to itself. The outer “ring” only

appears to describe the arcs that also appear from 8→ 0 and 8→ 1; 9→ 2 and 9→ 3, etc.

If the entries in the (phantom) outer ring are each increased by 16, the span-4 graph with

its outer ring depicts the span 5-graph. The addition of the appropriate phantom ring

0′→ 31′ then describes the additional induced arcs of the span 5-graph to the interior

nodes.

6

Figure 2.1. Massey-Liu Graph for span n = 4

Previously, graphs Bn were typically drawn exhibiting a left-right symmetry

(x1…xn versus xn…x1) with respect to a vertical centerline. See Figures 2.2 and 2.3 for

versions of the graph Bn, for 1 < n < 4. Nodes that are self-symmetric appear on the

centerline. There is also a top-bottom symmetry (x1…xn versus 1x … nx) with respect to

the center point of the graph; here x denotes the binary complement of x. Graphs larger

than B5 are complex to draw.

7

Figure 2.2. B1-B4 as depicted by Golomb (1967)

Figure 2.3. B5 as depicted by Golomb (1967)

n= 1

0001
0010

M = 2

0011

n = 3

0111

n = 4

/ ...i , olliaA

■ /

/ »101 mioo

Al 1 iun\

/ - \
<»IOIIK

\ OIIO / M \ OIK»

/ OOH \ h / IHM

Vtttliu/ (

VJOIII n U/

\ 01011 IIOI0

' V " yAl\Wl\

\ 101II, ' - 11101 /

8

Employing the notion of doubling, Taylor (2001) creates a copy of B6. In

Figure 2.4, we show a depiction of this B6. Note that the nodes are named by their

decimal equivalent values.

Figure 2.4. Taylor’s depiction of de Bruijn graph for n = 6

9

Fredricksen (1992) displayed the graph as embedded in a sphere, shown in

Figure 2.5. Note that as in the Massey-Liu graph, Figure 2.1, all the arcs do not appear.

One successor arc is drawn from x→ y as it would appear in the pure-cycling shift

register (Golomb, 1967). The alternative arc (not appearing) would be drawn from the

predecessor node x to the alternate successor node y ⊕ 00…01, where ⊕ denotes a

modulo 2 addition of the n- long string 00…01.

Figure 2.5. Good-de Bruijn graph of span n = 6 embedded in a sphere

We note that the de Bruijn graph is an important model in the areas of Markov

Modeling, Convolutional Codes, Trellis Coding and Sequential Decoding. The Viterbi

Algorithm, which finds the most likely path through a graph given a maximum-likelihood

measure on code words defined by the Convolutional Code, also uses the de Bruijn

graph. An implementation of the Viterbi Algorithm in silicon led Collins, et al. (1992) to

10

discover the largest planar subgraphs of the graphs B6 and B7 (of 64 and 128 nodes,

respectively) and they then extended these into a span 14 (B14) Viterbi decoder of 16,384

nodes, which flew on the Galileo Spacecraft.

The model of the graph suggests many research problems. One of these,

suggested by Golomb (1967), is the conjectured largest number of simultaneous disjoint

cycles in the graph. The conjectured maximum is given by Z(n) = ?n ? d/n Φ(d) 2n/d,

where the summation is taken over all divisors d of n and Φ is Euler’s totient function.

The sum counts all necklaces of length n in 2 colors of beads or, equivalently, enumerates

the equivalence classes of binary n-tuples under cyclic rotation. Lempel (1971)

conjectured that this same number of vertices, if removed from the graph, would be

sufficient to leave the (directed) subgraph acyclic. Mykkeltveit (1971) proved this.

Lempel’s conjecture implied Golomb’s and inferred the existence of a Cycle Adjacency

Array (CAA).

In the CAA, the set S of removed nodes is subjected to the transformations L, L2,

etc. to form a sequence, S, L(S),…,Lk(S) = S, which is ultimately periodic. The

transformations is defined by L(S) = {x| xεS or 2x and 2x+1 whenever both x and

x+2n-1 εS}. Thus, x and its companion x+2n-1 appearing in S are replaced by the two

possible (shared) successors 2x and 2x+1, respectively, in L(S). Note, these changes

x→ 2x and x+2n-1→ 2x+1 describe one step along the cycles defined by the cyclic

equivalence classes described earlier. An example of a CAA for the case n = 5 is shown

in Figure 2.6.

0 0 0 0 0 0 0 0 0 0 0 0 0
16 1 2 4 4 4 4 4 4 4 4 8 16
17 17 3 6 6 6 12 12 12 24 24 24 17
18 18 18 5 10 10 10 10 10 10 20 9 18
19 19 19 7 7 7 14 14 28 25 25 25 19
21 21 21 21 11 22 13 13 13 26 21 21 21
27 27 27 27 27 23 15 30 29 27 27 27 27
31 31 31 31 31 31 31 31 31 31 31 31 31

Figure 2.6. Cycle Adjacency Array for n = 5

The first column to the left of the vertical bar is the removed set S. The successive

columns are Γ(S), Γ2(S), until Γ12(S) = S again. When the set S has been chosen properly

11

and Γk(S) = S with k > 1 then the set S satisfies Lempel’s conjecture and thereby

Golomb’s conjecture. As drawn in Figure 2.6, removing the black values and leaving

only the red numbers gives a different version of the graph B5. The numbers are the

decimal equivalents of the nodes. The rows are the cycles of the cyclic equivalence

classes and appearance on a row is evidence of an adjacency in the graph B5. The other

implicit arc of the node x goes to the node 2x +1(mod 2n) in the same column of the

successor 2x(mod 2n) shown in the respective row. We suppress these arcs only to keep

the graph easy to view. Larger graphs are possible, such as for n = 7 and n = 9 as they

appear in Fredricksen (1992). One can even suppress the numbers, as they can be

understood also!

In another application, Bryant et al. (1991) show that when additional nodes are

removed from Bn, maximum independent sets can be formed. Their procedure leads to a

fractal- like property in the graph Bn. These various methods to explain the graph and its

properties have led to this paper and a method of construction for the graph that is

recursive and therefore extendable to larger sizes. A detailed description of our method

is given in Chapters III and IV. Thus the research in the underlying combinatorics leads

to improvements in the model on occasion, and also the different versions of the model

can lead to new mathematical research.

12

THIS PAGE INTENTIONALLY LEFT BLANK

13

III. CONSTRUCTING THE GRAPH

The de Bruijn graph and some of its properties and applications are detailed in

Chapter II. The difficulty in drawing the graph for larger spans is the inspiration for our

efforts to find a better method. Some of the symmetric properties used to draw the graph

originally yield the inferences that we need, namely:

1) The nodes of the directed graph Bn, represented by the 2n binary n-tuples,

obey a left-right symmetry with respect to the centerline of the graph (CLn) so that the

node x1x2…xn is symmetrically placed opposite the node xnxn-1…x2x1.

2) The nodes of Bn are placed so that the node x1x2…xn is placed

symmetrically opposite the node 1x 2x … nx with respect to the center point of the

drawing.

When constructing higher-order binary de Bruijn graphs by recursion, several

techniques can be considered. It is natural to consider recursive processes, Bn → Bn+1 ,

Bn → Bn+2 , Bn → Bn+3 , etc., with B1 forming a basis for the process. Each step

increment, n ? n+k, dictates a different recursive method. The step increments also

prescribe the number of copies needed for the recursion. That is to say, to implement

Bn → Bn+1 requires two copies of Bn, Bn → Bn+2 requires four copies of Bn, Bn → Bn+3

requires eight copies of Bn, etc. Each incremental method also has its own separate and

unique challenges and varied nuances of construction. For the purpose of this paper, we

focus on one method of recursion, namely Bn → Bn+2. We note that there is a difference

between graphs of even and odd order further detailed in Chapter V. This leads to

additional issues when applying Bn → Bn+1 , Bn → Bn+3, etc. Furthermore, our

presentation only addresses graphs of odd order. Even-to-even constructions,

even-to-odd, odd-to-even and other recursive methods are topics for future research and

development and we describe some of the issues involved in Chapter V. These processes

present no essentially difficult problems beyond those which we deal with here. Thus,

the rest of the paper illustrates odd order binary de Bruijn graphs built by quadrupling,

Bn → Bn+2 , employing heavily the symmetry properties (1) and (2) above.

14

A. LABELING

We first describe our labeling conventions. The nodes of the graph are classically

labeled by binary n-tuples or their decimal equivalents. We use a binary representation

for the nodes, as that fits our construction better. The basis of the recursive process is the

graph B1. Labeling by binary 1-tuples, the top node is labeled 0 and the bottom node is

labeled 1. B1 is shown in Figure 3.1. Note that we have suppressed all of the arcs as they

are not relevant for our process. We also include the centerline of symmetry from

property 1) and the center point x of symmetry from property 2). These provide an aid to

a recursive construction process. Often the center point x will not appear explicitly in our

construction. We call the centerline of Bn, CLn and the center point CPn.

0

1

X

Figure 3.1. de Bruijn Graph, B1

For each iteration, as the span n increases by 2, the number of nodes appearing

increase by a factor of 22 or 4. Our labeling system plays a large role in determining the

overall graph. The binary strings representing the nodes of Bn are used to implement

left-right symmetry and top-bottom symmetry properties described above. They are

applied on the nodes of Bn and those of Bn+2 as we proceed. This binary representation is

also used to identify the self-symmetric nodes that belong on the centerline of the

respective graphs. Such nodes are self-symmetric if the binary strings are left-right

palindromes. This placement of nodes is addressed and clarified in Chapter IV after the

recursive process is explained further below.

15

B. PARAMETERS AND CONSTRAINTS

Before describing the recursive process, we need to establish additional rules for

the recursive construction. We refer to these rules as the constraints and parameters of

the process. Without fixed constraints and parameters, the de Bruijn graph will assume

any arbitrary shape and consequently defeat our purpose of establishing an easy-to-

extend pattern.

We define β to be the clockwise measure of the angle between the centerline CLn

and the node 00…01. Beginning with B1 we establish a target size B2m+1 as the end of

our process. The constraints demand that the value β of the final graph, B2m+1, does not

exceed 60o. If the initial angle on B3 is α, see Figure 3.2, then the size of α cannot

exceed β/m, according to the recursive process used to build higher order graphs. This

point is clarified later in this section. Parameters of our construction also include the

length A, the length of the first centerline CL1 on B1 and the length B, the distance from

the top node 000 on B3 to the grid center point CP3, the length C, the distance between

the top center node, 010 on B3, and CP3. The angle α remains constant throughout the

entire recursive process and is constrained as described above. The parameters are

indicated in Figure 3.2. Three of the four copies required to complete B3 are depicted.

Note that the distance A is retained on each of the copies used in the figure and the angle

α is the same for each of the three copies shown. Details on the colors used and the

names of the nodes, etc., are reserved to Chapter IV.

16

α
A

B

C

Figure 3.2. Parameters for our recursive process

By adjusting the parameters α, A, B and C, as illustrated on the graph B3, we

change the shape of the “building block”. B3 is the “building block” for larger graphs in

our illustration of the process. The shape of B3 dictates the shape of all subsequent

graphs. As the lengths A and B increase, the entire graph B2m+1 gets longer, and as these

lengths decrease the graph gets shorter. How C affects the graph depends upon the

relative adjustments to A and B. Increasing α widens the graph and decreasing it makes

the graph thinner.

The chosen sizes of the parameters are determined in the following way. Length

A is established on B1. This is an overall scaling parameter and has little effect in the

sequel. Lengths B and C will be discussed later. It is best to describe their choice in the

recursive process section. The measure of α is dictated by a predetermined span of the

final graph as described above. That is, the choice of α is made with an eye to the

ultimate target value of Bn that we seek to achieve. Namely, to produce B9 by

B1 ? B3 ? B5 ? B7 ? B9, we perform three iterations of Bn→ Bn+2, since the basis for

the process is really B3. But if the final angle measure satisfies β < 60o, then the initial

angle α must have measure satisfying α ≤ β/4 ≤ 60o/4, therefore α < 15o. Further

discussion of the other parameters is incorporated in the recursive process described next.

17

C. RECURSIVE GENERATION

The recursive process is a set of instructions to be repeated at each iteration. In

designing the process, we have in mind that it should be easy to follow and easy to

duplicate. Moreover, the target graph Bn should be easy to understand and view. The

process to build B3 utilizes B1 of Figure 3.1, rotates it clockwise by α from a centerline,

and four copies are produced. Parameter A and angle α have been described above. We

now describe how the parameters B and C are chosen. Details of the names of the nodes

as described are given later in this section. B is the length from the top node, 000, of the

first copy of B1 to the center point CP3 and C is the length between the top center node,

010, and the center point. Clearly the lengths A, B and C are inter-dependent. Namely,

adjustments on length B automatically adjust length C and vice-versa according to the

symmetry properties 1) and 2). In a similar way adjustments on length A result in

adjustments affecting lengths B and C, though not necessarily in the same manner.

The following choices affect equivalent ways of adjusting B and C and ultimately

completing the graph:

a) From the labeling, we know that nodes 010 and 101 on B3 are self-

symmetric and therefore appear on CL3. Note that node 010 should be placed

above node 101, as our experience seems to say.

b) CP3 can be determined on CL3, midway between nodes 010 and

101. Thus lengths B and C are implicitly determined.

c) The location of node 111 on CL3 is determined by symmetry (2) as

symmetrically opposite node 000, with respect to the center point CP3.

d) The location of node 011 below node 001 on a line parallel to CL3

is determined by symmetries (1) and (2) on node 100. Equivalently, we place

node 110 below node 100 on another line parallel to the centerline.

Following the symmetric properties, the construction results in the skeleton of B3

(without arcs, of course). From here we begin the recursive generation, proper. To build

B5 we require four copies of B3. The nodes of B3 are labeled as 000, 001, 010, 011, 100,

101, 110, 111. The first copy of B3 has label 00 appended on each node as 00(_ _ _) for

18

placement on B5. Subsequent copies are labeled as 01(_ _ _), 10(_ _ _), and 11(_ _ _) for

the four copies. These are rotated and translated according to a procedure delineated

further in Chapter IV. The symmetry properties (1) and (2) are employed heavily in the

translations applied to the four copies. The CL3 of each copy of B3 plays an important

role in the construction of B5. Surprisingly, the construction of B5 depends in a crucial

way on the eventual CL7 that will be established on B7. The nodes that appear on CL7 are

assumed to be properly placed in B5 only if they lie on a line in B5 according to our

procedure. However, their location on that line depends in a surprising way on the

location of the nodes on CL3! This is explained in more detail in Chapter IV. Here we

merely note our process and self- imposed rules. Namely, given Bn, we rotate it

clockwise α, make four copies and place these on the grid according to symmetric

properties (1) and (2).

In Chapter IV the names of the nodes used are typically suppressed and a

color-coding system is used to describe the nodes and the binary representation for the

nodes for the four copies of Bn used. Once these copies are placed on the graph the

construction is complete. This describes the recursive method for a Bn → Bn+2

construction for odd values of n. For even values of n a different basis is required as

described in Chapter V.

The same procedure is used to build graphs of arbitrary order. We see in

Chapter IV that, during the construction, the parameters A, B and C determining the

location of the nodes of Bn+2 might need to be adjusted. These adjustments all take place

on the “building block”, B3. Thus, the building block B3 is crucial to our process and we

need to build a “reasonable” B3. By reasonable we mean that no overlapping nodes

should appear in the first few iterations of the process. So if B7 has overlapping nodes we

return to B3 and adjust the parameters B and C. The impact of the adjustments on B or C

might be earliest seen after several iterations, so it is typically necessary to draw B7 to

ensure that B3 is going to produce a “reasonable” graph. It is unrealistic to think that the

nodes will never overlap, except in principle. In Chapter IV, we see that it becomes

inevitable that nodes overlap beyond a certain value of the span.

19

Now that we have procedures for building odd higher order binary de Bruijn

graphs in place, we see in the next chapter what the higher order graphs look like.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

IV. RESULTS

Chapter III introduced the recursive process for constructing higher-order,

odd-span, binary de Bruijn graphs. This chapter illustrates the results of the recursive

generation and further details what was described previously. We also present certain

additional properties of the graphs we construct in this chapter.

A. BUILDING THE GRAPHS

We first illustrate in Figures 4.1-4.4 how to construct the “building block”, B3.

This illustration shows little regard to lengths B and C, as these are mostly involved in

later iterations. Later in the chapter, particular attention will be paid to how changes in

lengths B and C affect subsequent graphs.

STEP 1: As described in Chapter III, we first make four copies of the

rotated graph B1. For our illustration, length A is set to 2 inches and α = 15o. For

purposes of labeling the copies and their respective nodes we append two high order bits,

to each binary string of respective copies. The two appended bits are 00 for the first

copy, 01 for the second copy, 10 for the third copy and 11 for the fourth copy. Note that

different colors are also employed to distinguish between copies. For the purpose of our

illustration, copy 0 is red, copy 1 is yellow, copy 2 is green and copy 3 is blue.

0

1

00

0

1

01

0

1

10

0

1

11

Figure 4.1. Four copies of B1

22

STEP 2: Copy 0 is placed on a centerline CL3 with its node 0, namely the

node 000, on the centerline and the center point CP3 is located according to parameter B.

Copy 1 is placed with its node 0, namely node 010, on the centerline according to length

C and its self-symmetry. That is, node 010 is on CL3 as the node, 010, is self-symmetric.

This results in Figure 4.2.

010

011

000

001

CP3

CL3

Figure 4.2. Placement of copies 0 and 1

23

STEP 3: We locate copies 2 and 3 according to top-bottom symmetry

(property 2), left-right symmetry (property 1) and self-symmetry. Nodes 101 and 111 are

self-symmetric, so appear on CL3. Note that each of these nodes is node 1 in copy 2 and

copy 3, respectively. The result appears in Figure 4.3.

010

011

100

101

000

001

110

111

Figure 4.3. Placement of copies 2 and 3

24

STEP 4: We draw the outline shape, resulting in the skeleton of B3 when we

remove the construction lines. The final product is B3, as appears in Figure 4.4, with

most of its arcs suppressed and the CL3 appearing.

010

011

100

101

000

001

110

111

Figure 4.4. Recursively generated B3

25

In creating the graph B3 of Figure 4.4, the parameters A, B and C were each

considered. However, once B3 is constructed to be used as the basis for the additional

recursive construction, these parameters are no longer used. The only parameter of

importance for building subsequent graphs Bn now is the angle α. The symmetric

properties (1) and (2) are the only guides we need for placement of the four copies we use

after the building block B3 is made. B5 is drawn from four copies of B3 in three steps, as

illustrated in Figures 4.5-4.8. For this illustration B3 is reduced in size so we could fit the

graph on the page (A = 1.25 inches).

STEP 1: A copy of B3 is rotated through the angle α. For this iteration

α = 15o. Four copies of B3 labeled 00, 01, 10, 11 are made. Notice in Figure 4.5 that in

the center of each copy of B3 are the two digits that we append when labeling the nodes

in B5. The labeling follows a similar pattern each time we employ it.

010

011

100

101

000

001

110

111

010

011

100

101

000

001

110

111

010

011

100

101

000

001

110

111

010

011

100

101

000

001

110

111

00 01 10 11

Figure 4.5. Four copies of B3

26

STEP 2: We place the four labeled copies of B3 on CL5 according to

symmetry properties (1) and (2). The centerline nodes for CL5 are the self-symmetric

nodes, namely 00000, 00100, 01010, 01110, 10001, 10101, 11011 and 11111. Figure 4.6

illustrates the placement of B3 (red) and the positions of some of the other nodes of B5

required by symmetry property (1) as they would appear in a symmetrically placed copy

of B3.

10(000)

11(000)

11(100)

01(000)

10(100)

αα

Figure 4.6. Illustration of Symmetry Property 1)

Notice the location of the nodes 10(000) and 01(000) and their colors. These are

symmetrically placed opposite nodes 00(001) and 00(010), respectively. They are also

used to place the second and third copies of B3. Node 11(000), symmetrically placed

opposite node 00(011), is used to place the fourth copy of B3. Since α is the same angle

for each copy, we are done when these four nodes are placed as the four copies of B3 can

then be located. We make the point that the other nodes on the centerline of the right

27

(black) copy of B3 are 00000, 01000, 10100 and 11100. Their eventual appearance as

00(00000), 00(01000), 00(10100) and 00(11100) on CL7 is ensured by there appearance

on CL3 of this (black) copy! It follows that these nodes are on a line in B5 from

symmetry property (1) and their appearance as 000, 010, 101 and 111 on CL3 in the

respective locations. The drawing of the second, third and fourth copies, given their

respective 000 node and the angle α, is easily seen in Figure 4.7.

00010

00011

00100

00101

00000

00001

00110

00111

01010

01011

01100

01101

01000

01001

01110

01111

10010

10011

10100

10101

10000

10001

10110

10111

11010

11011

11100

11101

11000

11001

11110

11111

Figures 4.7. Placement of copies 0, 1, 2 and 3

28

STEP 3: Finally, we draw the outline shape, the skeleton of B5, and remove

all other construction lines. The final graph is B5. We retain the signature colors for

clarity and suppress all the arcs for the same reason.

00010

00011

00100

00101

00000

00001

00110

00111

01010

01011

01100

01101

01000

01001

01110

01111

10010

10011

10100

10101

10000

10001

10110

10111

11010

11011

11100

11101

11000

11001

11110

11111

Figure 4.8. Recursively generated B5

Just as we generated B5, we also generate B7, and so on. To ensure that the all the points

are properly symmetrically placed, we consider the centerlines of each Bn, Bn-2 and Bn+2.

29

We now address the issue of whether we like the building block we have created.

If we use a traditionally shaped B3, as shown in Figure 4.9,we create a B5 and B7 as also

shown. Notice there results a reasonable-looking B5, but the graph B7 has some

overlapping nodes that we don’t like.

Figure 4.9. Traditional B3, generating B5 and B7

Thus, the lengths B and C need adjustment. In Figure 4.10, length C has been

adjusted so that node 010 is placed farther from the center point and lengths A and B

remain the same. The result for this less traditional B3 is tested on B5 and B7. The B5

graph is reasonable but once again the B7 graph is not.

B3 B5 B7

30

Figure 4.10. Non-traditional B3, generating B5 and B7

By further adjustment, mainly to length C, we finally are able to produce a

reasonable- looking B7. The top center node, 010 of B3 lies just below the line, between

the nodes 001 and 100 as shown in Figure 4.11.

B3 B5 B7

31

Figure 4.11. Model B3, generating B5 and B7

So this model of B3 yields a reasonably nice B7 and is used further in the creation

of the graph B9 illustrated in the next section of this chapter. We also produce graph B11

from this model of B3; this appears in Chapter V. The graphs B11 (Figure 5.3) in

Chapter V reveal that further adjustment of not only length C but also the parameters α

and B are necessary. As α gets smaller, pursuant to our desire to hold β ≤ 60o, C can get

smaller by moving node 010 to be closer to the center point CP3 and B can get longer and

we still produce a reasonable looking B7. Figure 4.12 shows the graph B3 (and the

respective B5 and B7) used in the construction of graphs B11 and B13, (Figures 4.15 and

4.16) illustrated in the next section.

B3 B5 B7

32

Figure 4.12. B3 used to generate B5-B13

Thus, when determining parameters to adjust, we have to know the desired

outcome graph Bn. In Chapter V we outline a scaling procedure that would allow us to

ignore this step. Recall that we mentioned earlier that the nodes of the graphs would

overlap eventually. As the span of the graph grows it is unavoidable that some

overlapping will occur since the number of nodes grows exponentially and the space to fit

them in is finite.

The Bn→ Bn+2 recursive technique is a smooth, simple construction for building

odd higher-order binary de Bruijn graphs. First we construct the building block B3 in

four steps, then a three-step algorithm, using the recursive generation, is performed to

produce Bn+2 from Bn. This method proves to make the de Bruijn graph easily

extendible. With this method, higher order graphs can be constructed and properties of

these larger graphs can be discovered and developed.

B3 B5 B7

33

B. PROPERTIES OF THE GRAPH

Through experimentation, some interesting properties were discovered about the

graphs constructed. These properties address the importance of the labeling system we

employ, the building block B3 and how the centerlines CLn shift as the span n grows.

The labeling system and color-coding we use make identifying specific nodes a

simple exercise. In Figures 4.13 and 4.14, we demonstrate the ease of locating a

particular node in B9. Such a question would need to be considered if we were to draw

the arcs x → 2x and x → 2x+1 in the graph. Consider as an example the node numbered

294. Where is node 294 on the B9 graph?

34

Figure 4.13. Recursively generated B9

The binary representation of 294 gives a hint to its location. The binary

representation for 294 is 100100110. We decompose the binary string. The first two

bits, 10, represent copy 2 of the B7 graph used to construct B9. The next two bits, 01,

represent copy 1 of the B5 graph used to construct B7. The next two bits, 00, represent

35

copy 0 of the B3 graph used to construct B5. The final three bits 110 give the location on

B3. So 294 is in the third copy of the second copy of the first copy of the node 110 of B3

all represented on the 9-graph. Note, some of the nodes would be colored initially as

green, then yellow, then red. We only retain the last color they take on.

Figure 4.14. Location of node 294 on B9

36

Another interesting property of the construction is its sparse appearance near the

outer shell. There appears to be a relationship among these nodes. That relationship is

related to the building block, B3. The building block B3 can be found in many guises

throughout all the generated graphs. However one unique location of copies of B3 is as

they appear along the edges of Bn. As the graph grows, to span 11 and span 13, an

interesting phenomenon occurs. The center of Bn becomes dense, but the region closer to

the graph’s outline maintains a sparse appearance as we noted. The nodes near the

exterior can be viewed as a set of overlapping copies of B3 around the edge. Consider the

graphs in Figures 4.15 and 4.16, where copies of B3 are highlighted in red. The analysis

of this phenomenon can help us understand the density of nodes appearing in Bn. Note

that the density of the nodes is becoming extreme in B11 and B13. If we used smaller dots

to indicate the nodes it would not appear so dense in the center. Nevertheless, the center

of Bn is much more dense than the outer shell.

37

Figure 4.15. B11 with outlining copies of B3

38

Figure 4.16. B13 with outlining copies of B3

39

An additional property that we address involves properties of the centerlines of

the graphs. From the recursive process for constructing Bn+2 we use four copies of the

previous graph Bn. The centerlines of the copies are used primarily to represent how the

copies shift in each iteration. They also show that our construction rules are consistent,

as we inferred earlier. These centerlines replicate the four copies that arise first in the

design of B3. If the four centerlines of Bn are reflected in Bn+2 about CLn+2, the nodes that

they intersect on Bn+2 are the nodes that will ultimately appear on CLn+4. Namely, the

dotted line in B5 of Figure 4.17 is the reflected version (symmetry1) of copy 0 of CL3 of

B3. The nodes on this gray line appear as the red nodes of the centerline CL7 of B7. We

addressed this point when we discussed building B5 in Section III.C. We also note that

the centerlines of the second and third copies of Bn appear very close together in Bn+2. As

n grows all four of these centerlines Bn become almost vertical and very close together.

Figure 4.17 compares n = 3 to n = 5 and 7.

Figure 4.17. Centerlines on B3, B5 and B7

B3 B5 B7

40

Angle β increases with each iteration, and in turn the centerlines of the first and

second copies of Bn draw closer together. As the recursion progresses and the graph

continues to grow, the centerlines of these copies 1 and 2 will eventually overlap and

ultimately change places. As this happens, β becomes distorted and the entire graph

becomes indistinct. This forms the basis for our requirement that β ≤ 60o. Without

requiring β ≤ 60o this growth of the angle leads to the necessity to scale the graph. In

Chapter V we address the importance of scaling and our thoughts on how it might be

accomplished.

The properties presented here indicate that there are many more properties of the

de Bruijn graph that remain to be discovered. We discuss some of the possibilities in the

next chapter.

41

V. CONCLUSIONS AND RECOMMENDATIONS

In this chapter we address issues that arose when executing the recursive

generation and some thoughts for the future research on this general topic.

A. SUGGESTIONS TO IMPROVE OUR IMPLEMENTATION

Two major issues of concern that arose during the experimental phase, efficiency

of the process of building the graphs and our inability to scale the graphs.

The implementation of the recursive process of graph building was carried out

manually. It was time-consuming to manually create each graph, and to copy, rotate and

place the copies properly without the ability to set parameters automatically. Cleary, a

computer program to build de Bruijn graphs by the recursive process is needed and

clearly it is possible to produce such a program. With such a program, one could adjust

the parameters in many different combinations and quickly view their effect. A program

would enable us to consider even more models of building blocks to construct and test.

We would then likely also discover more properties from the additional building blocks.

Not only does the process of building the graph need to be streamlined through a

computer program but there also needs to be included in that program a method for

scaling down graphs for larger orders. As we constructed the graphs, the required angle

α on the building block B3 was established in an ad hoc manner by choosing a size for a

predetermined final graph. If the initial α was fixed and the span of a final graph was not

predetermined, then a scaling factor would be necessary to construct graphs that obeyed

the constraints given. For example if an initial value of the angle α = 20o; then the

constructed B7 has β? at the maximum value of 60o. The skeleton of the B7 is shown in

Figure 5.1.

42

1

1

1

0

1

1

1

1

Figure 5.1. Outline of B7 at α = 20o

Extending another iteration to B9 shows that this instance of B9 has β = 80o. β

obviously exceeds the constraint; see Figure 5.2. It is not yet problematic, but as we

continue to B11 we see that B11 has a completely distorted β of 100o; see Figure 5.3.
1

1

1

1

1

1

1 0

1

Figure 5.2. Outline of B9 at α = 20o

43

1

1

1
1

1
1

1

0

1

1

1

1
1

1
1

1

0

1

1

1

1
1

1
1

1

0

1

1

1

1
1

1
1

1

0

1

Figure 5.3. Outline of B11 with the 4 B9 copies shown at α = 20o

This pumpkin shape is unacceptable. Continuing the process will allow β to exceed 360o.

The ability to scale the graphs during the recursive process is critical. We need a means

of scaling the graph down after each iteration. It should be scaled by the same fraction

each time so as to create an easy-to-follow algorithm within the recursive generation. In

other words, a scaling algorithm should be embedded in the recursive construction of the

graphs. The computer program to generate should include this feature.

B. FUTURE RESEARCH

Our goal when beginning this study was to produce de Bruijn graphs, through

recursive generation, that were easy to construct and use. There were many techniques to

choose from for the recursive process. We chose to consider the recursive process using

44

Bn → Bn+2. We also presented only our work focusing on odd-to-odd order recursions,

with B1 forming a basis. We have some thoughts on the other recursive processes such as

Bn → Bn+1 and Bn → Bn+3 and even to even recursion. There are different results to be

achieved using these other techniques. For example, the even-span graphs have nodes

lying on the line through CP2n perpendicula r to CL2n. This is a little more cumbersome

for our process. The transition from even to odd or odd to even changes the character of

the graphs involved relative to this horizontal line. The issues are manageable but a little

unwieldy. Additional nuances and properties are involved in completing other orders.

For example, the basis for even to even construction may involve an additional

parameter. These are further areas to be explored. The same recursive algorithm could

be used but there are some differences in the outcomes.

We were able to build a “reasonable” looking B7. We are intrigued to note that there

appears to be some relationship between de Bruijn graphs and fractals. With the ability

to scale the graphs, fractal behavior can be observed. In order to show that de Bruijn

graphs are fractal, one would have to use a recursive process, show self-similarity and

also show the graphs have fractional dimension. A recursive process creating the de

Bruijn graphs has been demonstrated in the models. However, they do not appear self-

similar in any traditional sense and currently have no fractional dimension that we have

been able to demonstrate.

For future experimentation, a computer program will expedite the building process of

de Bruijn graphs. The program should have the ability to reduce or expand (scale) the

graph during the recursive process. This feature is important because the next iteration of

this research is to discover how the other orders behave and verify whether de Bruijn

graphs are fractal or not.

45

LIST OF REFERENCES

Berge, Claude, The Theory of Graphs and Its Applications, John Wiley, Publishing, 1962.

Bryant, Roy D. and Fredricksen, Harold, “Covering the de Bruijn Graph,” Discrete
Mathematics 89, pp. 133-148, 1991.

de Bruijn, Nicolas G., “A combinatorial problem,” Koninklijke Nederlands Akademie van
Wetenschappen Proceedings, Volume 49, pp.758-764, 1946.

Collins, O., Dolinar, S., McEliece, R., and Pollara, F., “A VLSI decomposition of the de
Bruijn graph,” Journal of ACM, Volume 39, pp. 931-948, Oct. 1992.

Di Battista, Giuseppe, Eades, Peter, Tamassia, Roberto, and Tollis, Ioannis G., Graph
Drawing, Algorithms for the Visualization of Graphs, Prentice Hall, 1999.

Fredricksen, Harold, “A survey of full length nonlinear shift register cycle algorithms,”
SIAM Review 24, Series #2, pp.195-221, 1982.

Fredricksen, Harold, “A new look at the de Bruijn graph,” Discrete Mathematics 37/38,
pp. 193-203, 1992.

Golomb, Solomon W., Shift Register Sequences, Holden-Day Incorporated, 1967.

Good, I.J., “Normal recurring decimals,” J. London Mathematics Society, Volume 21,
pp.169-172, 1946.

Johnson, D.M. and Mendelson, N.S., Planarity properties of the Good-de Bruijn graphs,
Combinatorial Structures and Their Applications, pp. 177-183, Gordon and Breach,
1970.

Krahn, Gary W., Double Eulerian Cycles on de Bruijn Graphs, Ph.D. Dissertation, Naval
Postgraduate School, Monterey, California, June 1994.

46

Lempel, Abraham, “On external factors of the de Bruijn graph,” Journal of
Combinatorics Theory, 11, pp.17-27, 1971.

Liu, R.W. and Massey, J.L., Proceedings of Third Annual Alberton Conference on
Circuit and System Theory, pp.73-81, Oct. 1965.

Mykkeltveit, Johannes, “A proof of Golomb’s conjecture for the de Bruijn graph,”
Journal of Combinatorics Theory, Series A 13, pp. 40-45, 1971.

Rosen, Kenneth H., Discrete Mathematics and Its Applications, Fourth Edition, pp. 202-
218, WCB/McGraw Hill, 1999.

Taylor, Herbert, “Drawing de Bruijn Graphs,” The Mathemagician and Pied Puzzler,
pp.197-198, 2001.

47

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Department of Mathematical Sciences
ATTN: Colonel Gary W. Krahn
West Point, New York

4. Department of Mathematics
ATTN: Chairman Clyde L. Scandrett
Naval Postgraduate School
Monterey, California

5. Department of Mathematics, Code MA/Fs
ATTN: Professor Harold Fredricksen
Naval Postgraduate School
Monterey, California

6. Department of Mathematical Sciences

ATTN: Captain D’Hania J. Hunt
United States Military Academy
West Point, New York

